Novel algorithms for object extraction using multiple camera inputs
نویسندگان
چکیده
This paper presents novel algorithms exploiting multiple camera inputs and segmentation techniques, which can be applied to image fusion, disparity detection and object extraction. Differently focused images, stereo pairs and both of them are used for fusion, disparity detection and object extraction, respectively. Firstly, image fusion is done by segmention of each image and determination of focused regions per segment. An efficient decision criterion is developed taking a method of auto-focus into consideration. Secondly, disparity detection is executed by recursively applying segmentation and disparity detection per segment. A new clustering criterion is proposed in order to achieve good segmentation and high compression ratio of disparity maps simultaneously. Finally, object extraction is carried out by utilizing both the fusion result and the disparity map. Experiments are carried out, and they show us effectiveness of the proposed algorithms.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملAutonomous Real Time Traffic Monitoring and Data Analysis
This paper presents a novel approach for real-time autonomous traffic analysis and parameter information extraction by employing vision-based detection and classification techniques in recorded or live streamed traffic scenes by a stationary camera. The high level information extraction and parameter estimation is done using multilevel algorithms operating on raw frame level, inter-frame level ...
متن کاملDeveloping a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature
According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کامل